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Abstract

For the characterization of mechanical characteristics of polymers containing voids (cavitated rubbery particles), a
homogenization method has been developed, which can handle large deformation problems including the onset and
propagation of instability and can reproduce the micro- to macroscopic deformation behavior of polymers with pe-
riodically distributed voids under macroscopically inhomogeneous loading conditions. A parametric study has clarified
the characteristic features of polymers containing periodically distributed heterogeneous cylindrical voids of different
volume fractions subjected to macroscopically homogeneous stress in different directions. Different types of shear bands
are observed, depending on the tensile direction with respect to the unit cell. The shear band connecting the voids that
appear in the early stages of deformation is responsible for the macroscopic yielding. Increasing the volume fraction of
the voids results in a decrease in the macroscopic yield stress and in the directional dependence of the macroscopic
stress—strain relationship. The moderate heterogeneity of voids causes complicated and different types of shear bands;
however, due to the high stress concentration caused by the presence of small voids, the onset and propagation of the
shear bands are promoted, and the macroscopic stress—strain relationships become essentially isotropic. Nevertheless,
the volumetric strain of unit cell changes with volume fraction and heterogeneity of the voids and tension direc-
tions. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Blending with 10-40% volume fraction of second-phase particles, conventional rubber particles, ranging
in size from 0.1 to 10 pm, is commonly adopted in order to control the mechanical properties of a polymer.
It has been clarified that the cavitation of second-phase particles leads to a porous matrix in which stress
triaxiality next to the void is substantially decreased, which suppresses the onset of crazing and promotes
plastic shear deformation in the materials (Yee, 1977; Fukui et al., 1991; Society of Polymer Science, Japan,
1991; Steenbrink and van der Giessen, 1997). Due to the increase in energy dissipation inside the plastic
deformation region, the toughness of the glassy polymer is considerably enhanced.

* Corresponding author. Fax: +81-78-803-6125.
E-mail address: tomita@mech.kobe-u.ac.jp (Y. Tomita).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00163-4


mail to: tomita@mech.kobe-u.ac.jp

3410 Y. Tomita, W. Lu | International Journal of Solids and Structures 39 (2002) 3409-3428

In order to clarify the deformation behavior of blended polymers, computational studies have been
performed. Among them, computational simulations employing realistic constitutive equations of polymers
(Boyce et al., 1988; Arruda and Boyce, 1993; Wu and van der Giessen, 1993; Tomita et al., 1997; Tomita
and Adachi, 1998; Tomita et al., 1999) have been carried out (Steenbrink and van der Giessen, 1997, 1998,
1999; Smit et al., 1999; Tanaka et al., 2000; Socrate and Boyce, 2000; Pijnenburg and van der Giessen, 2001;
Tomita and Lu, in press) and the mechanisms for improving the mechanical characteristics of polymers
upon blending of second-phase particles, i.e., rubber particles, have been investigated. However, often the
computational study of the blended materials is restricted to unit cells that deform under simple loading
processes (Steenbrink and van der Giessen, 1997, 1998, 1999; Tanaka et al., 2000; Socrate and Boyce, 2000).
A representative volume element method was employed for a large number of voids with random distri-
bution and the effects of the volume fraction and distribution of the voids on the macroscopic response were
discussed (Smit et al., 1999). Very recently, discussions associated with nonsymmetrical deformation be-
havior of unit cells containing voids of identical size (Pijnenburg and van der Giessen, 2001) and com-
pressible particles of different sizes (Tomita and Lu, in press) were presented.

To clarify the mechanical aspect and provide a quantitative picture with respect to the mechanisms for
improving the mechanical characteristics of blended materials, the homogenization method used for the
linear elastic problem (Guedes and Kikuchi, 1990) is extended to large deformation problems including the
onset and propagation of instabilities. This method can reproduce the micro- to macroscopic deformation
behavior of blended polymers with periodically distributed second-phase rubber particles under macro-
scopically inhomogeneous loading conditions. A parametric study has been performed by means of a series
of simulations for a plane strain glassy polymer containing periodically distributed heterogeneous cylin-
drical voids representing the cavitated rubber particles of different volume fractions under macroscopically
homogeneous stress. In particular, we address the effect of heterogeneity of the voids and the tension di-
rections with respect to the periodically distributed voids on the micro- to macroscopic response.

2. Constitutive equations

In order to describe the experimentally observed characteristic hardening feature of the glassy polymers,
the molecular chain network model has been developed by Boyce et al. (1988) and subsequently, further
modifications have been carried out (Arruda and Boyce, 1993; Wu and van der Giessen, 1993; Tomita et al.,
1997; Tomita and Adachi, 1998; Tomita et al., 1999). The corresponding three-dimensional (3D) constit-
utive equation in the updated Lagrangian expression can be derived along the same lines as discussed by
Boyce et al. (1988), in which the plastic strain rate &, is expressed as

. A o .
b= _201'17 T= (O-;jo-;j/z)l/ZJ oy = 0y — By, (1)
where o;; is the Cauchy stress and By; is the back-stress tensor which will be further specified later.

The shear strain rate yP in Eq. (1) is given by Argon (1973) as:

(-6

where 7, and A4 are constants, 7 is the absolute temperature, so = 0.077G/(1 — v) is the athermal shear
strength, G is the elastic shear modulus, v is Poisson’s ratio and 7 is the applied shear stress. Boyce et al.
(1988) extended this expression to include the effect of pressure p. They used s + ap instead of sy, where s is
the shear strength which changes with plastic strain from s, to a stable value s, p is the pressure and « is a
pressure-dependent coefficient. Since s depends on the temperature and strain rate, the evolution equation

77 = o exp
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of s can be expressed as § = h{l — (s/s,) }y°, where / is the rate of resistance with respect to plastic strain.
See Arruda et al. (1995) for the case of temperature dependence of the strain hardening of polymer.

The principal components of the back-stress tensor B;; for the eight-chain model (Arruda and Boyce,
1993), which is widely used in computational simulations, are

1 vE— 2 Y
Bi=-Cf/N -~ L' =
FCVN (m)

Lm:wmpé,f:;W+W+Wy (3)
where ¥} is the principal plastic stretch, 2, = /N is the locking stretch, i.e., limiting stretch in tension, N is
the average number of segments in a single chain, C® = nkT is a constant, z is the number of chains per unit
volume, k is Boltzmann’s constant, and L is the Langevin function. In the eight-chain model (Arruda and
Boyce, 1993) and other models (Boyce et al., 1988; Arruda and Boyce, 1993; Wu and van der Giessen,
1993), the number of entangled points of molecular chains is assumed to be fixed during the deformation,
and the average number of segments, N, is constant. Therefore, these models are referred to as affine
models. To accommodate the change in the entanglement situation due to deformation and temperature
change, a nonaffine model has been proposed (Tomita and Tanaka, 1995; Tomita et al., 1997; Tomita and
Adachi, 1998) in which the change in the number of entangled points is taken into account. The simplest
expression of the number of entangled points m in the temperature-independent case becomes

m(&) = mpexp{—c(1 —&)}. (4)

The variable ¢ represents the local deformation of polymeric material (Tomita et al., 1997). mq is the
number of entangled points at the reference temperature 7 = T and the initial state of deformation £ = 1; ¢
is a material constant. The decrease in ¢ causes a reduction in the number of entangled points m. Corre-
spondingly, the average number of segments in a single chain increases, which results in enhanced exten-
sibility of the material.

The complete elastoplastic constitutive equation can be established by introducing the constitutive
equation for the elastic part of the strain rate. The final constitutive equation that relates the rate of
Kirchhoff stress Sij and strain rate &, becomes

Sij = Lijklékl —P Lijkl = D?jkg - Ej/cl;

ij?

1
Fiy =

3 (0udji + 0u0jx + 0,104 + adu), P =D;

ijkl ﬁ

where Df, is the elastic stiffness tensor.

3. Computational strategies

In order to estimate the micro- to macroscopic deformation behavior of a blended polymer containing
the second phase, rubber particles that are assumed to be distributed periodically, the homogenization
method (Guedes and Kikuchi, 1990) is extended, along the same lines as indicated for the viscoplastic case
(Wu and Ohno, 1999), to the present problem formulated using an updated Lagrangian expression (Hill,
1958; Kitagawa et al., 1972).

Consider the 2D problem shown in Fig. 1, with domain y and boundary S subjected to surface force P,
on S, and prescribed velocity on S,. The body is formed by the spatial repetition of a base cell ¥ made of
different materials. Assuming that the base cell is very small, of order n compared with the dimensions of
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Fig. 1. Relation between macroscopic region and unit cell.

the entire body, the global coordinate is x; for the entire body and the local coordinate is y; related to the
single base cell, then y; = x;/#. Similar to the assumption used in the case of linear elastic materials (Guedes
and Kikuchi, 1990), the velocity v; is presumed to be expressed as an asymptotic expansion with respect to
parameter #:

Ui(xvy) :U?(x)+’/’vil(xay)+nzviz(x’y)+"'7 (6)

where ?(x) is the microscopically uniform part of velocity, whereas v! (x,),v?(x,y), ... are Y-periodic and
local perturbations due to the presence of heterogeneities in the unit cell. The velocity gradient v;; and
strain rate &; are expressed as
aU,‘ 1 al)l‘ . 1
= — - =, & == \U;; Vij). 7
axj+’76yj ] 2(,J+j) ()
Substituting the velocity v; into Eq. (7), we have the expression of strain rate

Ei(x,y) = '8+ n™E) + &} +n' B, + &Y+, (8)
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Introducing thus obtained velocity, velocity gradient and strain rate into the virtual work principle (Hill,
1958; Kitagawa et al., 1972) with the constitutive equation (Eq. (5)) and rearranging at the same order #, we
arrive at the virtual work principle for a macroscopic body:
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In Eq. (10) |Y| indicates the area of the unit cell shown in Fig. 1.

Egs. (9)—(12) are the governing equations for the macroscopic and microscopic scales, respectively. The
notations y* and ¢, are characteristic functions defined in the unit cell, which satisfy the Y periodicity and
are determined by the following equations:

1 (ox ox oy | dov; ou;
Ling=| =2+ 20 ) 44,5, 22 Idy:/ Lijw + 0,:04) =— dY, 13
/Y [ ) ( dy, oy, ai%p oy, | Oy Y( o + ) 0y ()
1[0, 6(;51) aqs.] ov; / 0o,
L= == +5+ )+ 0wt | =—d¥Y = [ P,——dY. 14
/y { 2 ( Y O Oy | Oy v 7y ()

Thus, characteristic functions Xf,l and ¢, for the unit cell depend solely on the material characteristics
and configuration of the microstructure of the unit cell, which are, in turn, obtained without interacting
stress and strain of the macroscale. On the other hand, the macroscopic equilibrium given by Eq. (9) can be
solved independently because the macroscopic characteristic functions indicated in Eq. (10) are identified
through Eqgs. (13) and (14). The homogenized material characteristics indicated by Eq. (10) reflect the
volume fraction, size and distribution of second-phase-particle-dependent onset and propagation of the
shear band in the unit cell. Once the average stress rate is estimated, different types of stress rates can be
obtained using the same transformation rule on the microscale (Ohno and Okumura, 1999). Eq. (9) can be
applied to solve the general boundary value problems for the materials with periodic microstructures under
macroscopically nonuniform deformation. In the present investigation, we use Eq. (9) for clarification of
the deformation behavior of a unit cell under macroscopically uniform deformation.

4. Computational model

A typical rubber-blended polycarbonate (PC) contains rubber particles which are spherical with pm
length scale and are dispersed throughout the matrix. The mechanical characteristics of the blended ma-
terial are strongly dependent on the initiation and propagation of the shear band in the matrix polymer and
the cavitations of rubber particles, which are strongly affected by the volume fraction and size of rubber
particles. Although the distribution of the rubber particles is somewhat random, here, we assume that it is
periodic and evaluate the detailed characteristics of microscopic deformation and clarify their effect on the
macroscopic mechanical characteristics of the blended polymer. The discussions are focused on the essential
feature of the voids, namely cavitated rubbery particles, containing polymer.

Fig. 2 illustrates the computational model in which heterogeneous voids are assumed to be distributed
periodically. Here, the matrix satisfies the constitutive equation (Eq. (5)). Each quadrilateral corresponds to

Fig. 2. Computational model.
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a cross-triangular element. As indicated in Fig. 2, in the present investigation, the heterogeneous voids are
assumed to be circular cylinders of radii of curvature r; and r, contained in the unit cell with side lengths wy
and /y, which characterizes the cases that will be investigated. The boundary conditions on the macroscopic
scale are that the upper and bottom surfaces are shear-free with a constant displacement constraint,
whereas the right and left surfaces are assumed to be stress-free. In the present analysis thus developed
homogenization method is employed, and the boundary condition for macroscopic scale is easily intro-
duced as in the conventional problems without the additional boundary condition for the unit cell.
Therefore, the plane strain analyses with off principal directional tension with respect to unit cell are
straightforward as compared with other unit cell methods (Pijnenburg and van der Giessen, 2001). It should
be noted that this cannot be carried out in the axisymmetric approximation that is used for 3D cells
(Steenbrink and van der Giessen, 1999; Socrate and Boyce, 2000) or for more elaborated stacked hexagonal
3D cells (Socrate and Boyce, 2000). Extensions of these models to account for the case with the hetero-
geneous voids would be very difficult. The discussion on comparisons between these models is given by
Socrate and Boyce (2000). On the other hand, the localized patterns in a randomly voided polymer are very
complex as approximated by 2D simulation (Smit et al., 1999), which is available by sacrificing the reso-
lution of deformation behavior in microscopic scale.

In order to investigate the effect of the loading direction on the deformation behavior of the unit cell, the
angle 0, which is the angle of the tension direction with respect to the principal direction of the unit cell, is
introduced and is parametrically varied from 0° to 45°. It is important to note that the constitutive models
used do not have a material length scale. Thus, the only length scales in the problem are the cell dimensions
which govern the solution through the dimensionless variables 7 /r,, Io/w, and volume fraction f;.

Here we will discuss the effects of volume fraction f, the size of voids 7, /r, with ly/wy =1 and the
direction 0 on such macroscopic deformation behavior as the average stress—strain relationship and mi-
croscopic deformation behavior such as onset and propagation of the shear band and mean stress distri-
bution.

For a typical unit cell, which is the microscopic element of the blended material, a macroscopically
homogeneous strain rate & = 10~%/s is applied. The material parameters for the polymer employed are
E/so = 23.7, 55 /50 = 0.79, h/so = 5.15, Asy/T = 78.6, o = 0.08, 7, = 2.0 x 10"/s, sp = 97 MPa, T =296 K,
my = 7.83 x 10% and ¢ = 0.33 (Tomita et al., 1997; Tomita and Adachi, 1998) which were the modified
versions of those for the affine-type eight-chain model (Arruda and Boyce, 1993; Wu and van der Giessen,
1993).

5. Computational results and discussion

Here, the problems associated with the heterogeneity and volume fraction of the voids-dependent mi-
croscopic to macroscopic deformation behavior of a polymer with voids are investigated by employing the
computational model presented in Section 4.

5.1. Average stress—strain relationship for a unit cell

Fig. 3 shows the typical nominal stress and volumetric strain for unit cell versus nominal strain rela-
tionships for polymers containing voids of sizes r; /r, = 1, 2, 5 and volume fractions f; = 0.2 under uniaxial
tension with different directions 8 = 0°, 15°, 30°, 45°. The response in the case of identical void size exhibits
considerable anisotropy, particularly in yield stress and around yield points, depending on the direction.
Macroscopic yield stress and stress corresponding to the strain over yielding point for 6 = 30°, 45° are
higher than those for 6 = 0°, 15°. In contrast, macroscopic yield stress decreases for the case of different
void sizes, r/r, =2 and the macroscopic responses are nearly isotropic for all deformation processes
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Fig. 3. Nominal stress normalized by shear strength ¢,/s, and volumetric strain for unit cell £, versus nominal strain u/L, for a
polymer containing voids of sizes r;/r, = 1, 2, 5 and volume fractions fy = 0.2: (a) r1/r, =1, (b) r1/ra =2, (¢) r1/ra = 5.
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investigated here. It is noted that the macroscopic yield stress is essentially identical to this case. These
typical characteristics are seen in the case with »/r, = 5 in which, as opposed to the cases with r; /r, = 1, 2,
yield stress for 6 = 0°, 15° is higher than that for 0 = 30°, 45°. The discussion concerning the stress—strain
relationship and the deformation characteristics in the unit cell is given in Section 5.2. These results suggest
that the inclusion of voids of moderately different sizes has a tendency to result in materials exhibiting
macroscopically isotropic responses. Due to the existence of the voids, the resistance to deformation of the
material does not exhibit the remarkable drop that can be seen in polymer without voids, which is at-
tributable to the contribution of the voids to the promotion of orientation hardening successively in the
ligament area of the matrix polymer.

5.2. Onset and propagation of shear band in unit cell

The equivalent strain rate distributions are shown in Fig. 4 with four different deformation levels of
u/L = 0.025, 0.050, 0.100 and 0.150. Fig. 4(a) 0 = 0 with r, /r, = 1, shows the typical onset and propagation
behaviors of the shear band. The high-strain-rate region emanates from the equator of the particle and then
localizes into a “wing-type” shear band, as termed by Steenbrink and van der Giessen (1997), which de-
velops into multiple bands. The corresponding stress—strain relationship in Fig. 3(a) exhibits an inflection at
the point where the wing-type shear band developed. Subsequently, the orientation hardening in the core of
the shear band starts so that the rate of deformation at the center of the band decreases. The front of the
sheared region advances as multibands of high-strain-rate, and propagates towards the top and bottom
parts of the unit cell. For the case with § = 15°, a very strong shear band that connects the voids appears
with relatively small deformation, which is associated with the decrease of the yield points, as indicated in
Fig. 3(a). Then the front of the sheared region advances as two bands to undeformed regions while pre-
serving the same pattern. Increasing the angle to 0 = 30°, high-strain-rate regions appear near the surface of
the voids and they connect with the nearest particles at 45° with respect to the tension direction, and
subsequently, a new weak shear band at 45° with respect to the tension direction develops and connects
particles. Then shear bands move along the particle surface and align. With further deformation, shear
bands again start to misalign, which causes additional distortion of the voids. In the case of 6 = 45°, the
high-strain-rate regions that appear near the surface of the voids and the midpoint between two voids
connect, forming wing-type shear bands. In the later stage of deformation, cross-type shear bands appear
on the ligament and develop. For 8 = 15°, 30°, the characteristic features of shear band patterns partially
share those in the cases of 0 = 0°, 45°.

The strain rate distribution in the case of voids of different sizes is shown in Fig. 4(b). For 6 = 0°, 15°, as
indicated, wing-type shear bands emanate from the surface of the small voids; whereas they start from the
surface of large voids in the cases of 0 = 30°, 45°. Subsequently, the shear band connects large voids via
small voids. Most of the typical characteristic features of the onset and propagation of the shear band in the
case of uniformed void size are preserved, except in the case of 6 = 45°. Within the calculated deformation
range, no shear bands connecting the small voids were observed.

As we increase the size difference between particles to r;/r, = 5, the typical characteristic features for
r1/r, = 2 are preserved. The shear bands connecting the large voids via small voids developed in the cases of
0 = 0°, 15°, while the shear bands directly connecting the large particles developed in the cases of 6 = 30°,
45°, In the former cases, propagation of shear bands along the small voids causes significant distortion of
the voids. The onset and development of the wing-type shear band on the ligament causes the decrease in
the stress in the later stages of deformation as seen in the case of 6 = 0°. Within the range of deformation
simulated in the present investigation, no strong shear bands connecting small particles were observed in
the cases of 0 = 30°, 45°. These different characteristic features cause the differences in the macroscopic
yield stress values, as mentioned previously, and in the macroscopic deformation behaviors. That is, the
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Fig. 4. Equivalent plastic strain rate normalized by average strain rate & /é, distributions corresponding to the cases in Fig. 3:
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average stress—strain relationships for 6 = 0°, 15° and r,/r, = 1 approximately correspond to those for
0 = 45°, 30° and r/r, = 5. In these cases, the deformation behaviors are essentially the same.

5.3. Deformation of voids

The distortion and rotation of the voids shown in Figs. 5 and 6 are governed by the onset and prop-
agation of the shear band connecting the voids. The strong distortions of the void shape are seen in Fig. 5
and correlate with the shear bands shown in Fig. 4. Fig. 6 shows that the rotation of large voids is different
from those of identical sized voids and small voids which largely rotate as compared with the large voids. In
addition, the rotation of the voids is strongly affected by the connection of the shear band, which is typically
seen in the rotation of the small voids as shown in Fig. 6 for the case of § = 15° and r|/r, = 5. The rate of
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Fig. 4 (continued)

rotation of the small voids remarkably increases as the shear band connecting large voids via small voids
develops and propagates along the small void over u/L, = 0.02-0.08 and it decreases as the shear band
propagates away from the small voids. Similar behavior can be seen in the case of 7 /r, = 2. Interestingly,
the rotation rate of the large void for r,/r, = 5 is high before the shear band connecting large voids via
small voids develops and after which, it decreases.

5.4. Volumetric strain

To characterize the dilatancy of the blended polymer, the volumetric strain for a unit cell is shown. Fig. 3
indicates the plot of volumetric strain for a unit cell versus nominal strain for the cases of f; = 0.2,
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Fig. 4 (continued)

ri/r,=1,2,5and 6 = 0°, 15°, 30°, 45°. Depending on the heterogeneity of the voids and tension directions,
quite different responses are seen. The rate of the evolution of volumetric strain for the case with 6 = 15°,
30° is higher than those for 0 = 0°, 45° except r/r, = 1, in which the rate for 0 = 45° maintains the same
level as those for § = 15°, 30°. Furthermore, the rapid increase of volumetric strain for ¢ = 0° and r /r, = 5
is noted in the later stage of deformation. The prediction of average volumetric strain due to V-BCC Model
and SHA Model (Socrate and Boyce, 2000) for f, = 0.2 exhibits similar tendencies which are seen in the
cases of 8 = 0°, 45°, respectively. The heterogeneity of the void size causes the decrease in the dilatancy and
anisotropic response. Therefore, the results suggest the difficulty of establishing the isotropic constitutive
equation for the blended polymer.

The volumetric strain of voids due to the deformation is seen in Fig. 7. For r;/r, = 1, 6 = 15°, 30°, 45°,
the continuous increase of void volume change is seen, whereas, it exhibits saturation in the case of 6 = 0°,
which results in the characteristic feature of volumetric strain of the unit cell as shown in Fig. 3. For the
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Fig. 5. Rotation and distortion of different sized voids under different directional tensions indicated by arrows for f, = 0.2: (a)
r/r =1, (b) ’”1/1’2 =2,(0) Vl/rz =5.

heterogeneous voids case, despite the complicated behavior of small voids due to the onset and propagation
of shear bands as indicated in Fig. 4, the volumetric change of large voids essentially governs the dilatation
of the voided polymer.

5.5. Mean stress

The mean stress, particularly positive mean stress, is the essential parameter for predicting the onset of
crazing. Therefore, here we will discuss the local distribution of mean stress in unit cell. Fig. 8 shows the
typical distribution of the mean stress for the cases of fo = 0.2, r;/r, = 2 and 6 = 0°, 30°. For comparison
purposes, the strain rate distributions are also shown. Table 1 shows the maximum values of the mean stress
normalized by shear strength s, for the different deformation stages for r/r, =1, 2, 5 and fy = 0.2. The
maximum value of the mean stress attains a very high value at macroscopic yield point, then decreases due
to softening and again increases due to orientation hardening. In the early stages of deformation, high
positive mean stress appears near the boundary surface of the voids at the equator with respect to the
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Fig. 6. Rotation angles o of different sized voids which initially aligned to tension directions for f, = 0.2: (a) 0 = 15°, (b) 0 = 30°.

tension direction. As the deformation increases, the location of the high mean stress point moves into the
interior part and then its value decreases due to the onset and propagation of shear band at a different
position. The increase of the heterogeneity of the voids causes the decrease of the maximum mean stress
over relatively small strain range. The local maximum mean stress at macroscopic yielding under uniaxial
plane strain tension (result reported by Socrate and Boyce (2000) by using the V-BCC Model with f, = 0.25
and triaxiality 1/4/3) is approximately 0.54s,. Regardless of the computational model, as indicated in Table
1, the order of the magnitude of maximum mean stress is roughly the same. The present results suggest that
the magnitude of maximum mean stress for respective direction increases in the later stage of deformation.

The simplest craze yield condition for polymeric materials is given as o; — g3 = 4 + B/, where g, and
o3 are the maximum and minimum principal stresses, respectively, and 4 and B are the temperature-de-
pendent material constants (Sterstein et al., 1968). Out of necessity, the mean stress ¢, must be positive to
develop a stress state favorable for crazing. Although the PC favors shear yielding, the positive mean stress
in the matrix shown in Fig. 7 and Table 1 is an important characteristic value that governs the crazing of
such materials as acrylonitrile-butadiene—styrene (ABS) and high impact polystyrene (HIPS).
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Fig. 7. Volumetric strain of voids e, versus nominal strain u/L, for fo =0.2: (a) ri/ra =1, (b) r1/r» =2, (c) ri/ra =5.
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Fig. 8. Mean stress normalized by shear strength o, /5o and plastic strain rate normalized by average strain rate é° /&y distribution in the

matrix for r /r, =2, fo =0.2.

Table 1
Maximum value of mean stress normalized by shear strength o,,/so in voids containing polymer for f, = 0.2
M/L()
0.025 0.050 0.100 0.150 0.200
ri/r=1
0=0° 0.452 0.401 0.363 0.347 0.381
0=15° 0.477 0.405 0.449 0.491 0.606
0 = 30° 0.492 0.554 0.536 0.532 0.556
0 = 45° 0.462 0.510 0.469 0.506 0.491
r /}“2 = 2
0=0° 0.516 0.440 0.401 0.393 0.444
0=15° 0.504 0.434 0.443 0.544 0.589
0 = 30° 0.488 0.432 0.471 0.584 0.695
0 =45° 0.485 0.472 0.417 0.379 0.472
r /Vz =5
0 =0° 0.433 0.447 0.454 0.496 0.469
0=15° 0.491 0.448 0.490 0.529 0.612
0 = 30° 0.474 0.425 0.444 0.514 0.628
0 = 45° 0.464 0.444 0.395 0.366 0.372

5.6. Effect of volume fraction of voids

In order to clarify the effect of volume fraction of voids on the deformation behavior of polymer con-
taining voids, a simulation has been carried out for the case with void volume fraction f; = 0.4. Here, the
obtained main results are summarized. Fig. 9 shows the nominal stress and volumetric strain for unit cell
versus nominal strain relationships for the polymer containing voids of sizes r/r, = 1, 2, 5 and volume
fraction f; = 0.4 under uniaxial tension with different tension directions 6 = 0°, 15°, 30°, 45°. Fig. 10
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Fig. 9. Nominal stress normalized by shear strength ,/sy and volumetric strain for unit cell £, versus nominal strain u/L, for a
polymer containing voids of sizes 71 /r, = 1, 2, 5 and volume fractions fy = 0.4: (a) r1/ra =1, (b) r1/ra =2, (¢) r1/r2 = 5.
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Fig. 10. Equivalent plastic strain rate normalized by average strain rate & /¢, distributions corresponding to the cases in Fig. 9 for
r /r2 =2.

indicates the typical equivalent plastic strain rate distribution for the cases of r; /r, = 2, fo = 0.4 and 6 = 0°,
15°, 30°, 45°. The macroscopic resistance of deformation remarkably decreases as the void volume fraction
increases from 0.2 to 0.4. Interestingly, anisotropy in elastic response with respect to different tension di-
rections is intensified as the void volume fraction increases for the case r/r, = 1, while almost isotropic
response is seen for the case of heterogeneous voids with »,/r, = 2. This tendency changes for r/r, = 5,
which is attributable to the mode of deformation in the unit cell. The deformation behavior is almost
completely controlled by the localized deformation connecting large voids. Therefore, the same situation
discussed in Section 5.2 for r|/r, = 5 is conformed. Regardless of the void volume fraction and hetero-
geneity, the evolution of volumetric strain for 0 = 0° (0 =45° for r;/r, = 5) is almost identical. The
magnitude of volumetric strain for 0 = 15°, 30°, 45° and their anisotropy with respect to tension direction
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Fig. 11. Mean stress normalized by shear strength ¢, /sy and plastic strain rate normalized by average strain rate &P /¢, distribution in
the matrix for r /r, =2, fo = 0.4.

increase with the volume fraction. However, as observed in Fig. 3(c), anisotropy in macroscopic response of
polymer with voids increases as the heterogeneity of the voids increases.

With regard to the strain rate distribution, due to the reduction in the distance between the voids caused
by the increase in the volume fraction of the voids the shear band connecting the voids becomes pre-
dominant. Nevertheless, the main characteristic feature of the shear band development is almost identical
to that in the case of low volume fraction f; = 0.2. This tendency is also caused by the decrease in the stress
concentration due to the increase in the radius of curvature of the voids. Indeed, the shear bands were much
more localized within the ligament area regardless of the tension direction for the case of volume fraction
fo = 0.4. The general pattern of the onset and propagation of shear bands is similar to that of the case with
So=02.

Fig. 11 shows the mean stress and strain rate distribution for the cases of fy = 0.4, 71 /r, =2 and 0 = 0°,
30°. The concrete values of magnitude of local maximum mean stress is shown in Table 2. The comparisons
between Figs. 8 and 11, and Tables 1 and 2 clarify that the decrease in volume fraction of moderately
heterogeneous voids causes the increase in the value of local maximum mean stress over the macroscopic
yielding range. Due to the concentration of deformation over the narrow ligament area, the maximum
mean stress possesses high value for the case with high void volume fraction.

6. Conclusions

The problems associated with the tension-direction-dependent macro- to microscopic features of
deformation of a polymer containing heterogeneous cylindrical voids that represent cavitated rubber
particles, distributed periodically under the plane strain condition, have been investigated. A new ho-
mogenization method has been developed to solve the present problems. The onset and propagation of
the shear band and the mean stress distribution in the polymer have been discussed in conjunction with the
heterogeneity of the voids and tension direction with respect to the principal direction of the unit cell. The
results are summarized as follows:
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Table 2
Maximum value of mean stress normalized by shear strength oy,,/so in voids containing polymer for f, = 0.4
u/LO
0.025 0.050 0.100 0.150 0.200
r /}"2 = l
0=0° 0.335 0.384 0.418 0.414 0.405
0=15° 0.394 0.417 0.421 0.431 0.478
0 =30° 0.433 0.540 0.547 0.548 0.562
0 =45° 0.473 0.564 0.549 0.531 0.590
T /}"2 =2
0=0° 0.442 0.463 0.424 0.436 0.397
0=15° 0.403 0.419 0.521 0.450 0.482
0 =30° 0.426 0.465 0.568 0.596 0.630
0 = 45° 0.405 0.566 0.578 0.613 0.628
r /i’z =5
0=0° 0.515 0.530 0.570 0.615 0.660
0=15° 0.477 0.478 0.526 0.532 0.559
0 =30° 0.414 0.393 0.392 0.425 0.508
0 =45° 0.344 0.388 0.348 0.354 0.382

(1) Depending on the tensile direction with respect to the unit cell, different types of shear bands are ob-
served. The shear band connecting the voids, which appeared in the early stages of deformation causes
softening and thus is associated with the decrease in the macroscopic yield stress. The onset of multiple
shear bands contributes to relieving the localization of strain.

(2) Increasing the volume fraction of the voids causes yielding of the polymer matrix in the early stages of
deformation so that the macroscopic yield stress and the directional dependence of the macroscopic
stress—strain relationship decrease.

(3) The polymer with voids of moderately heterogeneous size shows complicated and different types of
shear bands. Nevertheless, the macroscopic deformation behaviors are almost isotropic, which is due to
the small voids that contribute to the high stress concentration, and promote the onset and propagation
of the shear band.

(4) The dilatancy of the polymer with periodically distributed voids depends on the tension direction. In
spite of complicated behavior of small voids due to the onset and propagation of shear bands, the vol-
umetric change of large voids essentially governs the dilatancy of the polymer with voids.

(5) The decrease in the volume fraction of the voids causes an increase in the maximum value of the mean
stress in the matrix around the macroscopic yielding range; while it is insensitive to the tension direction.

The present results, particularly those associated with the effect of heterogeneity of the voids and the
tension directions on the micro- to macroscopic deformation behavior, provide new information. A
quantitative discussion confirming the present results requires further 3D calculations. The present com-
putational strategy may provide a computational tool for such 3D problems.
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